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Purpose. Acetylcholinesterase (AChE) is both a therapeutic target for Alzheimer’s disease and a target
for organophosphorus, carbamates and chemical warfare agents. Prediction of the likelihood of
compounds interacting with this enzyme is therefore important from both therapeutic and toxicological
perspectives.
Materials and Methods. Support vector machine classification and regression models with molecular
descriptors derived from Shape Signatures and the Molecular Operating Environment (MOE)
application software were built and tested using a set of piperidine AChE inhibitors (N=110).
Results. The combination of the alignment free Shape Signatures and 2D MOE descriptors with the
Support Vector Regression method outperforms the models based solely on 2D and internal 3D (i3D)
MOE descriptors, and is comparable with the best previously reported PLS model based on CoMFA
molecular descriptors (r2test;SVR ¼ 0:48 vs. r2test;PLS ¼ 0:47 from Sutherland et al. J Med Chem
47:5541–5554, 2004). Support Vector Classification algorithms proved superior to a classifier
based on scores from the molecular docking program GOLD, with the overall prediction
accuracies being QSVC(10CV)=74% and QSVC(LNO)=67% vs. QGOLD=56%.
Conclusions. These new machine learning models with combined descriptor schemes may find utility for
predicting novel AChE inhibitors.

KEY WORDS: acetylcholinesterase; docking; machine learning; molecular operating environment;
quantitative structure activity relationship; shape signatures descriptors; support vector classification;
support vector machine; support vector regression.

INTRODUCTION

Acetylcholinesterase (AChE) has long been considered
a therapeutic target in symptomatic treatment of Alzheimer’s
disease to treat cognitive deficiency. The inhibitors of this
enzyme work by reversibly blocking binding of the substrate
to AChE or by hydrolytic inactivation of AChE high affinity
site, thus effectively increasing the concentration of the
neutrotransmitter acetylcholine (ACh) in nerve endings. A

number of FDA approved AChE drugs include tacrine,
rivastigmine, donepezil and galantamine. In addition, organ-
ophosphorus (OP) compounds, which have found uses
ranging from insecticides to chemical warfare agents (CWAs),
exert their toxic effects by reacting irreversibly with a
catalytic serine to inhibit AChE. This in turn results in
overproduction of acetylcholine at cholinergic synapses and
overstimulation of muscarinic and nicotine receptors (1).
Various crystal structures have also facilitated computational
design of these and additional ligands at both the catalytic
and peripheral binding sites (2). For example donepezil is
positioned to occupy an anionic subsite in the active site
gorge by engaging in π-π stacking and cation-π interactions
(3). Synthetic efforts employing medicinal chemistry have
been a fertile source of multiple classes of AChE inhibitors
(2), which in turn have been employed to build quantitative
structure activity relationship (QSAR) models (4). Using
Comparative Molecular Field Analysis (CoMFA) (5), one
study constructed a model using 57 N-benzylpiperidines in the
training set (cross validated r2 values >0.6) and 20 molecules
in the test set (r2 >0.8) (6). A later study that used a protein
receptor-based alignment, docking N-benzylpiperidines and
related compounds in the mouse AChE structure, yielded a
comparable CoMFA model with cross validated r2 values
from 0.6 to >0.7 (7). A series of eight organophosphorus
AChE inhibitors were used to generate a Catalyst
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pharmacophore consisting of a ring aromatic feature, two
hydrophobic features and a hydrogen bond acceptor, with a
training correlation r2=0.994. This model was used to search a
database of >30,000 compounds to identify further
compounds to test (8). Another study applied a large array
of QSAR methods on >100 AChE inhibitors (and seven other
sets of compounds) by splitting the dataset into training and
test sets to compare their results (Supplemental Table 1).
CoMFA appeared to perform the best (9). More recently
Bayesian-regularized genetic neural networks were used with
Dragon descriptors to provide a QSAR for 60 huprines (10).
Docking scores obtained with FlexX and FlexiDock for a
series of 19 bis-tacrines were used as supplement CoMFA
descriptors to yield a model with cross validated r2=0.71. The
steric and electrostatic fields were also superimposed in the
crystal structure to assist inhibitor design (11). A further study
on a dataset of 80 AChE inhibitors split into training (68) and
testing (12) sets (encompassing several sets of published
tacrines, huprines and other compounds) using a total of 133
descriptors with stepwise multiple linear regression alone or
combined with simulated annealing and genetic algorithms,
resulted in test set correlations between r2=0.73–0.84. Several
of the descriptors used in the final models were Kier shape
descriptors (12). Finally, in a recent study, Manchester and
Czermiński demonstrated that machine learning methods,
such as Random Forest and Support Vector Regression,
combined with alignment-based molecular descriptors, can
efficiently model AChE inhibition activities of certain organic
molecules (13). Based on these and other previously
published studies, QSAR methods are important tools for
pharmaceutical drug design and for screening of potential
chemical warfare agents.

The goal of the current study was to examine the utility
of the alignment independent Shape Signatures (SS) and
MOE descriptors in the context of quantitative (regression)
and qualitative (classification) predictive models for molecu-
lar interaction with the AChE receptor. Previously, these sets
of molecular descriptors have been successfully applied to
cardiotoxicity-related target proteins and blood-brain barrier
data with machine learning classification method (14,15). In
these studies, it was found that 2DSS descriptors slightly
outperformed 1DSS with the SVM algorithm and that SVM
models based on Shape Signatures also performed slightly
better than those developed with the MOE descriptors for the
same datasets (14,15). Here, we demonstrate that a similar

collection of shape-based and alignment-free molecular
descriptors can be used to build predictive models for AChE
inhibition. When paired with the Support Vector Machine
regression (SVR) algorithm, the resulting QSAR models
performed competitively with more compute-intensive align-
ment-based methods such as CoMFA/PLS. Therefore, novel
shape-based, alignment-independent molecular descriptors
are a practical alternative to CoMFA and other alignment-
based approaches for future QSAR modeling. In addition, we
have reported a rigorous classification procedure which can
be used to categorize the drug-like molecules as either strong
or weak AChE inhibitors. This new approach was compared
with classification based on docking scores obtained from
GOLD (16).

MATERIALS AND METHODS

Datasets

The published dataset from Sutherland et al. (9) of 110
piperidine derivatives split into training (73) and test (37) sets
was used for this study. The list of original references and the
associated chemical structures can be found in Sutherland et
al. (9). The compounds in the test set were carefully selected
from the original pool of structures, and both the training and
test sets are structurally diverse, covering the entire range of
the measured activity data. The training and test sets were
utilized with SVR and PLS regression studies to allow a
quantitative comparison with previously reported PLS re-
gression models (9). For classification analysis, the entire set
of 110 structures was subjected to statistical analysis to assess
model quality as described below. Using SMILES strings
taken from the original papers as input, for each compound a
single default low energy conformation was generated by
CORINA (Molecular Networks GmbH, Erlangen, German,
http://www.mol-net.de) and assigned partial atomic charges
according to the Gasteiger-Marsili scheme (17). The resulting
molecular conformations, one per compound, were then used
to generate Shape Signatures histograms and to compute
MOE molecular descriptors.

Molecular Descriptors for Regression and Classification

Two classes of molecular descriptors were considered in
this study. The first group comprised 184 2D and 29 internal

Fig. 1. PCA analysis performed in the space of 1DSS (a), 2DSS (b) and 1DSS + MOE2D (c) molecular descriptors. Filled circles: molecules
from the training set. Open circles: molecules from the test set.
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3D (i3D) molecular descriptors calculated using the Molecu-
lar Operating Environment (MOE, Chemical Computing
Group, Montreal, Canada) modeling program. The latter set
comprised descriptors that depend on the molecular confor-
mation and includes a number of quantum chemical descrip-
tors, such as the molecular dipole moments, heats of
formation, ionization potentials, HOMO and LUMO energies
calculated using the AM1 semi-empirical method. It should
be noted that all 213 MOE molecular descriptors used in this
study are alignment independent, i.e. they do not require the
molecules to be orientated in any particular way prior to
descriptor generation (such as in CoMFA, which requires
molecular alignment).

The second group of descriptors is the shape-based
descriptors derived from the Shape Signatures method (1D
shape signature: 1DSS; 2D shape signature: 2DSS) (18), a
method that has been documented extensively in the
literature (14,15,18–20). Shape Signatures employs a ray-
tracing algorithm to explore the volume enclosed by the
solvent-accessible surface of a molecule, and converts this
information into simple numeric representations (i.e., signa-
tures) that encode molecular shape and polarity. The degree
of similarity between a pair of molecules can be assessed by
comparing their 1D signatures (shape only) or 2D signatures
(shape and surface charge distribution). This process is fast
and efficient, and it eliminates tedious and subjective atom-
based alignment of the molecules required in many traditional
molecular modeling approaches. Shape Signatures is amenable
to numerous molecular modeling and cheminformatics applica-
tions, including drug discovery, virtual database screening, and
predictive toxicology (14,15,18–23). Similar to previous applica-
tions (14,15,20) for each compound in this study, the heights of
the bins of the associated 1DSS (shape only) and 2DSS (shape
and polarity) Shape Signature histograms represent distinct
molecular descriptors which are inherently three-dimensional
and are also alignment independent.

Finally, we have examined a number of mixed descriptor
schemes where we combined molecular descriptors from
Shape Signatures with those computed with MOE. In
particular, below we report the results of regression and
classification analyses for the following mixed descriptor

libraries: 1DSS + MOE2D, 1DSS + MOE2Di3D and 2DSS +
MOE2Di3D.

Data Preparation for Regression and Classification

The large collections of molecular descriptors described
above were filtered with the unsupervised forward selection
(UFS) procedure of Livingstone and co-workers (24) prior to
running SVR, PLS or SVC to remove redundant and correlated
descriptors. The UFS program has proven valuable for data
preparation for subsequent QSAR (24) and classification analysis
(14,15,20). The final compositions of all descriptor selection
schemes considered in this study are as follows: 22 descriptors for
1DSS, 53 descriptors for 2DSS, 42 descriptors for MOE2D, 45
descriptors for MOE2Di3D (91% 2DMOE and 9% i3DMOE),
54 descriptors for 1DSS + MOE2D (69% 2D MOE and 31%
1DSS), 55 descriptors for 1DSS + MOE2Di3D (66% 2D MOE,
7% i3D MOE and 27% 1DSS) and 60 descriptors for 2DSS +
MOE2Di3D (57%2DMOE, 3% i3DMOEand 40%2DSS).We
note that the Shape Signatures descriptors make up a large
fraction of descriptors in the mixed descriptor libraries, although
lower than the 2D MOE descriptors.

The utility of predictive models may suffer due to the
unique regions of chemical space (i.e., applicability domain)
occupied by structures from the training and test sets. As we
have introduced new sets of molecular descriptors in this
work, it was therefore important to examine the chemical
space covered by these new molecular descriptors. We
conducted principal component analysis (PCA) with 1DSS,
2DSS and 1DSS + MOE2D molecular descriptors. The first
few PCs, which are certain linear combinations of the input
descriptors, define the directions along which the data points
(molecules) are maximally spread. If the structures from the
training and test sets do indeed occupy remote regions of the
chemical space, which would generally undermine the quality
of predictions, this should become visible in the first PCs as
these will reflect maximal separations between the data
points. Fig. 1a–c display the positions of the molecules from
the training and test sets on the PC1-PC2 plane for 1DSS
(variance explained: PC1 = 60% and PC2 = 17%), 2DSS

Table I. PLS Regression Analyses of Ache Compounds from Sutherland et al. (9). The Training Set Contains 73 Molecules and the Test Set
Contains 37 Molecules

Molecular descriptorsa q2PLS
b sPLS

b Number of PLS componentsb r2train
c strain

c r2test
d stest

d

1DSS (22) −0.56 1.48 1 – – – –
2DSS (53) −0.09 1.27 1 – – – –
MOE2D(42) 0.31 1.02 2 0.55 0.83 0.34 1.09
MOE2Di3D (45) 0.42 0.93 2 0.64 0.75 0.42 1.03
1DSS + MOE2D (54) 0.28 1.04 3 0.64 0.75 0.43 1.03
1DSS + MOE2Di3D (55) 0.31 1.01 3 0.67 0.72 0.44 1.02
2DSS + MOE2Di3D (60) 0.22 1.08 3 0.64 0.75 0.38 1.08

aNumbers in parenthesis reflect the number of independent molecular descriptors selected by the UFS (unsupervised forward selection)
algorithm.

bThese three columns list q2PLS , sPLS (analogous to sPRESS) and the model complexity, i.e., the number of the PLS components, for the best
PLS model determined from 10-fold cross validations performed on the training set. The best PLS model minimizes sPLS (maximizes q2PLS ).

cThese two columns list r2train and strain for the best PLS model determined from 10-fold cross validations.
dThese two columns list r2test and stest for the best PLS model determined from 10-fold cross validations.
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(variance explained: PC1 = 47% and PC2 = 17%) and 1DSS +
MOE2D (variance explained: PC1 = 15% and PC2 = 15%).
For the latter case, similar behavior was observed when we
examined the locations of the data points in the coordinate
systems of the other principal components (PC1 vs. PC3, PC2
vs. PC3, etc.). The test and training sets would appear well
distributed in the molecular descriptor space suggesting that
when a predictive model is developed with the training set, it
can be applied to predict the test set with little concern about
uncertainty due to exceeding the applicability domain.

Regression by Partial Least Squares (PLS)

Partial Least Squares (25) is a popular linear regression
tool that can deal with large input sets of correlated
descriptors and which has been routinely used in chemo-
metrics and cheminformatics. The method includes features
of both principal component analysis and multiple linear
regression, generating combinations of descriptors with large
variances and reduced intercomponent correlations which
simultaneously show large covariance with the endpoint
(activity) data.

In this study, for each descriptor library the data from the
training set was used to identify a single best performing PLS
model, similar to the protocol outlined in (9), in which the
best PLS model was the one which recorded the lowest root
mean-squared error in the 10-fold cross correlation (s10CV)
experiment across the entire training set. Following this
previous study (9), the s10CV values were modified before
final selection in order to account for the complexity of the
model reflected in the number of the PLS components. Once
generated, this model was applied to predict the data from
both the training and test sets. The quality of such predictions
for each descriptor selection scheme was monitored by
computing the root mean squared error (strain and stest) and
the squared correlation coefficient r2train andr2test

� �
between

the observed and predicted data. The output PLS models
contained typically 1 to 3 PLS components. The PLS as well
as PCA analyses reported earlier were carried out using the
routines from the Statistics Toolbox of MATLAB (Version
7.6, The MathWorks, Inc, Natick, MA).

Support Vector Classification and Support Vector Regression

The SVM method (26,27) is a powerful machine learning
technique that has been used widely to tackle complex
classification and regression problems (13,26–35). SVM is
based on the structural risk minimization principle which
seeks to minimize the upper bound on the expected risk
(26,27), and thus is believed to display better generalization
properties than methods derived from empirical risk minimi-
zation. The SVM binary classification procedure is capable of
separating the representatives from two classes even when
they are linearly inseparable in the space of input descriptors.
This is accomplished by projecting the data into a higher
dimensional feature space where linear separation is fre-
quently possible. SVM uses a special type of function, called
the kernel function, which represents the interactions be-
tween the data points in high dimensional space. Following
our previous studies (14,15,20), for classification we have used
the freely available program LIBSVM (C-SVM) (36) with the
Gaussian radial basis function kernel, whose parameter γ
along with the SVM penalty term C, were determined in each
case through a simple grid search procedure by 10-fold cross
validation.

For classification, we combined data from the training and
test sets into a single dataset of 110 molecules. For each choice
of descriptor library, the UFS procedure was carried out for the
entire dataset. The composition and the numbers of the retained
descriptors were found to change slightly from those reported
above. The dividing boundary was set at IC50=150 nM, which
resulted in 56 strong and 54 weak AChE inhibitors. Calculations
for other representative boundaries 100, 250 and 500 nM are
provided in the SupplementaryMaterial (Supplemental Tables 2,
3, 4). The quality of all classification models was evaluated by
considering the following set of statistical indicators: sensitivity
(SE), specificity (SP), overall prediction accuracy (Q) and
Matthews correlation coefficient (C) (33,37). These quantities
are defined in terms of the numbers of true positives (TP; true
strong AChE inhibitors), false positives (FP; weak AChE
inhibitors classified as strong), true negatives (TN; true weak
AChE inhibitors), and false negatives (FN; strong AChE
inhibitors classified as weak). In these notations, the total
number of real experimentally documented activators is given

Table II. ε-SVR (support vector regression) Analysis of AChE Compounds from Sutherland et al. (9). The Training Set Contains 73 Molecules
and the Test Set Contains 37 Molecules

Molecular descriptorsa s10CV
b r2train

c strain
c r2test

d stest
d

1DSS (22) 0.99 1.00 1.03×10−3 0.40 1.01
2DSS (53) 0.96 0.87 0.44 0.30 1.14
MOE2D (42) 1.03 0.93 0.36 0.36 1.04
MOE2Di3D (45) 0.97 0.96 0.24 0.36 1.05
1DSS + MOE2D (54) 0.92 0.99 0.12 0.48 0.97
1DSS + MOE2Di3D (55) 0.90 0.93 0.32 0.44 0.99
2DSS + MOE2Di3D (60) 0.94 0.90 0.38 0.41 1.03

aNumbers in parenthesis reflect the number of independent molecular descriptors selected by the UFS (unsupervised forward selection)
algorithm.

bThis column lists s10CV for the best SVR model determined from the 10-fold cross validation performed on the training set. The best SVR
model minimizes s10CV.

c r2train and strain for the best SVR model determined from 10-fold cross validations.
d
r2test and stest for the best SVR model determined from 10-fold cross validations.
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by TP + FN, whereas a corresponding number of real non-
activators is TN + FP. Sensitivity then expresses the prediction
accuracy of a classification model with respect to AChE
inhibitors: SE ¼ TP= TPþ FNð Þ; while specificity reflects the
prediction accuracy for non-activators: SP ¼ TN= TN þ FPð Þ.
The overall prediction accuracy is calculated as Q ¼
TPþ TNð Þ= TPþ FPþ TN þ FNð Þ. Finally, we also report
values of the Matthews correlation coefficient (33,37) described
a s C ¼ TP� TN � FP� FN½ �

.
TPþ FNð Þ TPþ FPð Þ TNþð½

FPÞ TN þ FNð Þ�1=2. For a perfect classifier with FP = FN = 0,
one would have C = 1.0. For a random prediction, C≈0, and for
a complete inversion (TP = TN = 0), C = −1.0.

Based on our previous work (14,15), two types of model
validation were used to examine SVC models. The first group
included models generated by 10-fold cross validation con-
ducted on the entire dataset. The overall prediction accura-
cies for these models are denoted by Q10CV. The models from
the second group were averaged over a series of 100
independent leave-20%-out runs (overall accuracies 〈QLNO〉).
The leave-20%-out tests were designed as follows: for each
dataset, about 20% of the molecules were randomly picked to
represent the hold-out test set and the rest of the data
constituted the training set for this particular data division.
The selection was carried out to approximately preserve the
correct proportion of AChE activators and non-activators in
both sets. Each SVM classification algorithm was then
trained on the training set and applied to predict class
attributes of the compounds in the test set. To obtain more
reliable statistical estimates, the procedure was repeated 100
times, each time with a different composition of the test and
training sets.

With inclusion of the distance-dependent loss function it
is possible to apply the SVM to regression problems
(13,29,34,35). The loss function tries to position the hyper-
plane in the feature space such that the data points lie
maximally close to it. In this study we utilized the SVM

algorithm with the ε-insensitive loss function (ε-SVR), where
all the data lying outside the region of distance ε from
the hyperplane in the feature space are penalized. We used
the LIBSVM (ε-SVR) (36) program with two choices for the
kernel function: the linear kernel and the Gaussian radial
basis function kernel. In each case, the parameters of the
model and the ε term were determined through a grid search
by 10-fold cross validation. This protocol is similar to that
described above for the PLS regression. For each descriptor
library, after having identified the best ε-SVR model for the
training set, we applied it to model the data in the test set. We
also used the same set of statistical measures (strain, r2train , stest,
and r2test ) to judge the quality of the SVR predictions.

Docking and Scoring with GOLD

The docking program GOLD (Version 3.1) (16) was used
to dock all 110 compounds to the binding site of the human
isoform of AChE (PDB ID:1B41 (38)). For each ligand, 30
independent docking runs were performed in order to
identify the top docking mode. The best ranking conforma-
tion for each ligand was chosen according to the
corresponding GoldScore (16) of that conformation. This
approach resembles the default scheme for a typical high-
throughput docking experiment, and in this study we
preferred it over more sophisticated procedures (39) which
entail construction and validation of the scoring functions
specifically designed for docking of the considered set of
inhibitors to the AChE receptor. Classification was carried
out based on the values of the GoldScore fitness function
without any additional weighting factor. These scores varied
from 50.94 to 82.19. The cutoff for classification was chosen as
half the value of the best and the worst docking scores
combined. According to this scheme, molecules with docking
scores above this value were categorized as strong inhibitors
and those below this boundary as weak inhibitors. The
predicted compound classifications based on the GoldScore
were compared with their experimental classification and the
results of the SVM classification.

RESULTS

The published dataset from Sutherland et al. (9) of 110
piperidine derivatives was used for this study. First we

Table III. SVM Classification of 110 AChE Compounds from Sutherland et al. (9). The Dividing Boundary was Set at IC50=150 nM Resulting
in 56 Strong and 54 Weak Inhibitors

Molecular descriptors Q10CV
a (%)

Leave-20%-out testingb

〈SE〉 (%) 〈SP〉 (%) 〈QLNO〉 (%) C

1DSS 69 52 67 59 0.193
2DSS 74 68 64 66 0.328
MOE2D 69 62 69 66 0.320
MOE2Di3D 73 61 70 65 0.313
1DSS + MOE2D 74 64 70 67 0.351
1DSS + MOE2Di3D 76 61 69 64 0.302
2DSS + MOE2i3D 76 66 68 67 0.343

aThis column lists prediction accuracies Q10CV estimated from 10-fold cross validations performed on the entire dataset.
bThe tabulated values of 〈SE〉, 〈SP〉, 〈QLNO〉 and C were averaged over the results of 100 different hold-out test set experiments (see text for
details).

Table IV. Classification of 110 AChE Compounds from the Sutherland
et al. Dataset Based on Docking with GOLD. The Dividing Boundary
was Set at IC50=150 nM Resulting in 56 Strong and 54 Weak Inhibitors

Method SE (%) SP (%) Q (%) C

GOLD scores 32 81 56 0.156
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compared our linear regression results using non-alignment-
dependent descriptors with those for alignment-dependent
descriptors used with PLS by Sutherland et al. (9) (Table I).
The following three models were found to perform the best with
respect to their ability to model AChE inhibition activity of the
test set: PLS with 1DSS + MOE2D q2PLS ¼ 0:28; r2test ¼ 0:43

� �
,

PLS with 1DSS + MOE2Di3D q2PLS ¼ 0:31; r2test ¼ 0:44
� �

, and
PLS with MOE2Di3D q2PLS ¼ 0:42; r2test ¼ 0:42

� �
. All three

alignment-free models performed comparably with the align-
ment-dependent CoMSIA q2PLS ¼ 0:46; r2test ¼ 0:44

� �
and

CoMFA q2PLS ¼ 0:52; r2test ¼ 0:47
� �

models reported previously
by Sutherland et al. (9) (Supplemental Table 1). However, we
were unable to find reasonable PLS models for either 1DSS or
2DSS alone, based on their negative q2PLS obtained with the
10-fold cross validation.

In addition to PLS, we have evaluated the SVR algorithm
with a linear kernel function. The best performing models
were obtained with MOE2D and MOE2Di3D descriptors,
which yielded r2test ¼ 0:39 and r2test ¼ 0:35, respectively. This
performance is similar to that observed with the PLS models
described above. Mixed descriptor schemes performed worse
than with PLS resulting in r2test � 0:23� 0:26, while 1DSS
r2test ¼ 0:11
� �

and 2DSS r2test ¼ 0:16
� �

were able to generate
only weakly positive correlations.

Further regression experiments utilized the non-linear SVR
algorithm with the Gaussian radial basis function kernel. Here,
data fitting is performed in a high dimensional feature space
(Table II). Again the top performers were SVR models based
on mixed descriptor schemes, i.e. SVR with 1DSS + MOE2D
r2test ¼ 0:48
� �

, SVR with 1DSS + MOE2Di3D r2test ¼ 0:44
� �

and SVR with 2DSS + MOE2Di3D r2test ¼ 0:41
� �

. Interestingly,
the SVR model using 1DSS alone r2test ¼ 0:40

� �
was compara-

ble to these previously described models and shows a vast
improvement over the linear kernel. The SVR models built on
1DSS and combined 1DSS and MOE2D descriptor schemes are
therefore recommended as viable alternatives to CoMFA/PLS
(9).

We have also constructed a series of SVC models to
classify compounds according to the AChE inhibition activity.
The dividing boundary was positioned at IC50=150 nM, which
yielded a balanced set of 56 strong and 54 weak inhibitors,
and the results for various statistical tests were compared for
different descriptor schemes (Table III). As before, the best
performing method is the SVC coupled with 1DSS + MOE2D
descriptors (Q10CV=74%, 〈QLNO〉=67% and C=0.351), fol-
lowed by the methods based on 2DSS + MOE2Di3D (Q10CV=
76%, 〈QLNO〉=67% and C=0.343) and 2DSS alone (Q10CV=
74%, 〈QLNO〉=66% and C=0.328). In contrast to the SVR
regression models discussed above, SVC based on 1DSS alone
performed the worst (Q10CV=69%, 〈QLNO〉=59% and C=
0.193). We have compared the SVM results with classification
based on GOLD docking scores (Table IV). Classification of
the actives and inactives based on raw docking scores at the
150 nM cutoff suggested that only 56% of them were predicted
correctly. This observation can be attributed to a low positive
correlation between the calculated GOLD scores and experi-
mental activities pIC50 (r=0.27 and r2=0.07). Thus, the
comparison of SVC and classification based on GOLD
revealed that SVC results were substantially more accurate.

Finally, we have compared the statistical regression
models built using the top ranked 3D structures from GOLD

(one conformation for each substance) with the models
constructed using 3D molecular conformations generated by
CORINA (one conformation for each substance), which
ignores interactions with the receptor. Four sets of molecular
descriptors, 1DSS, 2DSS, MOE2Di3D and 1DSS + MOE2D,
were computed for each molecule using the top ranked 3D
conformations generated by GOLD. These data were then
used to predict the pIC50 values with SVR as described above
(Table V). However, the results for the 1DSS, 2DSS and
1DSS + MOE2D descriptor libraries were found to be worse
than those from the SVR models based on molecular
conformations generated by CORINA (Table II). For
MOE2Di3D, r2test ¼ 0:31 was closer to the value 0.36
obtained for the original SVR model. This can be explained
by the fact that configuration-dependent MOE i3D descrip-
tors represent only 9% of the descriptor set.

DISCUSSION

As a first step towards developing global AChE models,
we have evaluated a combination of Shape Signatures and
MOE descriptors with PLS, and two SVM based methods,
namely SVR and SVC. Our data using a benchmark AChE
dataset (9) indicates that PLS and SVR with Shape Signatures
and MOE descriptors are able to produce similar test set
statistics as other widely accepted and more compute-
intensive QSAR methods (e.g., CoMFA and CoMSIA). It is
important to note that in this study we have used descriptors
that are alignment independent. Sutherland et al. used
alignment-dependent descriptors, which in turn were found
to outperform alignment-independent descriptors, such as
HQSAR and Cerius 2 (9). Therefore a more reliable
comparison with our results would use the latter methods, in
which case combining 1D Shape Signatures and MOE
descriptors improves the test set r2test to 0.44 from 0.16–0.37
(Supplemental Table 1) in the study by Sutherland et al. (9).

The best overall regression model is the SVR paired with
the 1DSS + MOE2D descriptor scheme. This model combines
molecular shape expressed through the subset of 1DSS
descriptors with various physicochemical characteristics cap-
tured in the MOE2D subset and was found to be superior to
either shape-based alone or shape-free 2D MOE derived
models. Based on our prior experience using classification
studies (14,15,20), we expected the 2DSS/SVR model to
outperform the 1DSS/SVR model. However, the 1DSS/SVR
model with the Gaussian radial basis function kernel was
preferable in modeling the binding affinity for the AChE

Table V. ε-SVR (support vector regression) Analysis of AChE
Compounds from Sutherland et al. (9) with the 3D Descriptors
Generated Using the Top Ranked GOLD Poses for Each Molecule.
The Training Set Contains 73 Molecules and the Test Set Contains 37

Molecules

Molecular descriptors s10CV r2train strain r2test stest

1DSS 1.17 0.66 0.82 0.27 1.13
2DSS 1.06 0.66 0.76 0.17 1.20
MOE2Di3D 1.03 0.78 0.59 0.31 1.11
1DSS + MOE2D 1.05 0.64 0.83 0.33 1.08

Notations are the same as in Table II.
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receptor. It is also interesting to note that the MOE2D
descriptors turned out to be the least sensitive to the choice of
the regression algorithm.

In addition, we have used GOLD docking scores to
classify compounds as inhibitors of AChE. This method was
found to perform substantially worse than the SVM classifi-
cation models coupled with the Shape Signatures and MOE
descriptors. As was noted before, a weak correlation between
the docking scores of the top GOLD poses and experimen-
tally measured activities underlies the low predictive power of
the docking based classification. This translated to a high rate

of false predictions with 44% of the considered molecules
being classified incorrectly. As an illustration, Fig. 2 displays
the suggested interaction map and relative orientation inside
the AChE binding pocket of the two molecules Suth 2–22 and
Suth 2–32. The two structures produced similar GOLD
scores, (72.35 for Suth 2–22, and 67.78 for Suth 2–32) and
were found to be well positioned inside the binding pocket
with a number of suggested stabilizing interactions to hold
them in place. However, experimentally Suth 2–22 is a very
strong inhibitor with IC50,exp=0.3 nM, whereas Suth 2–32 is a
weak binder (IC50,exp=54 μM). Classification of the top

Fig. 2. Schematic representation of the interaction map and relative orientation inside the AChE binding pocket of Suth 2–
22 (red) and Suth 2–32 (green) after docking with GOLD. Both compounds showed similar GOLD scores, 72.35 for Suth 2–
22 and 67.78 for Suth 2–32, and were classified as strong inhibitors in the docking-based classification. Experimentally, only
Suth 2–22 was found to be a strong binder with IC50,exp=0.3 nM while Suth 2–32 was reported as a non-activator with IC50,exp=
54 μM. The two molecules were assigned correctly by the 1DSS + MOE2D/SVM classifier. The binding site residues are colored
by their nature, with hydrophobic residues in green, polar residues in purple and charged residues highlighted with bold
contours. The figure was generated using the LigX application in MOE (Chemical Computing Group, Montreal, Canada).

Fig. 3. The results of UPGMA (Unweighted Pair Group Method with Arithmetic Mean
Algorithm) clustering analysis based on the Euclidean metric performed using the 1DSS +
MOE2D descriptors for the Sutherland training dataset augmented by atropine, galant-
amine and procyclidine. UPGMAwas performed using the Statistics Toolbox in MATLAB
(Version 7.6, The MathWorks, Inc, Natick, MA).
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docking modes of these molecules based on GOLD scores
failed to reflect such a difference in activities. In contrast,
both molecules are predicted correctly by the 1DSS +
MOE2D/SVM classifier. This observation suggests that more
detailed AChE-specific scoring functions are in fact needed to
better represent ligand binding interactions of a given set of
molecules with the AChE receptor using GOLD. A similar
conclusion has been reported earlier by Guo et al. (39) for a
different set of AChE inhibitors.

We have also addressed the question of which set of 3D
molecular conformations is better suited for statistical mod-
eling of the subject AChE inhibition data: the collection of
the top ranked poses from GOLD (a single highest scored
conformation for each molecule) or the ensemble of default
low energy 3D conformations generated by CORINA (one
conformation per structure). Intuitively, one might expect
that the SVR models constructed from the top scoring GOLD
conformations yield greater statistical quality than those
obtained with structures produced by CORINA (Table II).
However, we found the results with GOLD less satisfactory
than those obtained with CORINA (Table V). A possible
explanation of these findings may be that, in this particular
case, the single top-ranked GOLD conformation may not be
the best representation of the molecule. Perhaps building an
averaged structure from the top 10% or so poses or utilizing a
more rigorous scoring scheme for selecting a single confor-
mation (39) would provide a more satisfactory description. In
this context, CORINA assembles the molecular structure
using a library of crystallographically determined structural
templates, thus producing an averaged representation of the
given molecule, which turned out to be better suited for the
purposes of the reported statistical analysis.

Finally, we note the limitations of our approach, namely
that not all known AChE molecules can be predicted with the
PLS, SVC and SVR models based on the different descriptor
schemes reported in this study. It is important that the users
first ascertain whether their query molecules are inside the
region of the chemical space (applicability domain) occupied
by the molecules from the training set. For instance, we found
that the known AChE inhibitors, viz., atropine, galantamine
and procyclidine, cannot be reliably predicted with the
models developed in this study from the published data from
Sutherland et al. Fig. 3 illustrates the results of UPGMA
(Unweighted Pair Group Method with Arithmetic Mean
Algorithm) clustering analysis conducted in the space of
1DSS + MOE2D molecular descriptors on the Sutherland
training dataset along with atropine, galantamine and procy-
clidine. This analysis clearly indicates that these molecules lie
outside the training set and would explain their poor
prediction using SVR.

In conclusion, the objective of the present study was to
examine the quality of a novel set of alignment-independent
molecular descriptors derived from molecular Shape Signa-
tures (14,15,18–20). These descriptors are inherently three-
dimensional and a relatively new addition to the other 2D/3D
descriptor collections used in predictive QSAR modeling
(40,41). These descriptors would also appear to be compara-
ble to alignment-dependent descriptors used earlier by others
with the same dataset. To date, we have shown that Shape
Signatures can be used in drug discovery (19,21) and ADME/
Tox models (14,15,20). We have for the first time extended

the Shape Signatures methodology to regression and classifi-
cation models for AChE inhibitors. Future work will focus on
the development of scoring functions and machine learning-
based methods that can capture the binding modes of
structurally dissimilar ligands binding to AChE including
CWAs. The Shape Signatures method is also currently under
study as a novel approach for identification of simulants of
CWAs by querying molecular databases. The models used in
the current study could be used to score structurally similar
molecules for therapeutic applications.
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